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Abstract 

The Energy Release Rate (ERR) for the quasi-static problem of a 

semi-Infinite mode I crack propagating through an inhomogeneous isotropic 

linearly vlscoelastic body is examined.  The shear modulus is assumed to 

have a power-law dependence on depth from the plane of the crack and a very 

general behavior in time.  A Barenblatt type failure zone is introduced in 

order to cancel the singular stress and a formula for the ERR is derived 

which explicitly displays the combined influences of material 

viscoelasticity and inhoraogeneity.  The ERR is calculated for both 

power-law material and the standard linear solid and the qualitative 

features of the ERR are presented along with numerical illustrations. 



1.  Introduction. 

In an earlier paper, [1], the quasi-static problem of a semi-infinite 

mode I crack propagating through an infinite inhomogeneous isotropic 

linearly viscoelastic body was investigated.  The primary focus of that 

study was the description of the stress and displacement fields in a 

viscoelastic material characterized by a shear modulus exhibiting a very 

general behavior in time and a power-law spatial dependence.  The principal 

objective of this paper is to calculate the Energy Release Rate (ERR) for 

the crack problem studied in [1] and to illustrate its dependence on the 

combined influences of material viscoelasticity and inhoraogeneity. 

In this work, the viscoelastic body in which the crack propagates is 

assumed to have a shear modulus of the form 

lJ(t,y) = U^g(t)(y/y^)^ (1) 

where  y  denotes distance as measured from the plane of the crack  y 
'   c 

is a characteristic depth,  0 <_ Y < 1,  and initially the only restrictions 

placed on  g  are that it be a positive, continuous, decreasing, and convex 

function of time.  Subsequently, for illustrative purposes the specific 

forms of  g  to be considered will correspond to the standard linear solid 

and a power-law material. 

The assumption of a simple power-law behavior in space for the shear 

modulus introduces certain unphysical features into the model.  However, as 

pointed out in [1] and [2] and references cited therein, the consequences 

of the pure power-law model do not preclude its applicability to certain 

physical scenarios.  Apart from the suitability of the shear modulus 

considered in this paper to any specific model, an important aspect of this 



work is the demoastration that for such a modulus, a tractable boundary 

value problem results, from which can be obtained meaningful average 

quantities associated with the energetics of the crack, specifically, the 

ERR.  Furthermore, it shall be shown by a simple perturbation argument that 

for materials which experience a significant softening near the plane of 

the crack, a notion to be made precise later, the simpler assumption that 

the shear modulus vanishes in the plane of the crack may still provide a 

model for making acceptable engineering predictions. 

The Stress Intensity Factor (SIF) and the ERR are familiar and 

important notions in the development of a fracture criterion.  For a large 

class of crack problems in homogeneous, linear elastic materials, a simple 

relationship exists between the two quantities.  However, in the case of 

crack propagation in an inhoraogeneous viscoelastic material as considered 

here, the usual notion of the SIF is no longer valid since the order of the 

dominant singularity in the stress field near the crack tip is a function 

of the spatial inhomogeneity exponent.  However, the notion of the ERR 

still provides a meaningful fracture criterion.  Furthermore, by adopting 

the techniques and loading assumptions utilized in [3], the ERR is easily 

calculated and illustrates vividly the spatial and viscous effects. 

The boundary value problem considered here is that of a mode I 

semi-infinite crack propagating with constant speed in a nonhomogeneous 

isotropic viscoelastic media in a state of plane strain. If the crack is 

assumed to propagate in a plane about which the spatial properties of the 

body are symmetric and along the x^-axis with speed v, driven by loads 

f(xj^-vt) which follow it, then the specific boundary value problem to be 

solved is 



0. . .  = 0 
iJ.J 

-=° < x^< -, X2>0 

0 . . = 2y*de  + (S 
2v 

.. .  ..,, T„; U*de,, 

a22(x^,0,t) = f(xj-vt) x^<vt 

U2(xj,0,t) = 0 Xj>Vt 

-" < x^< ». 

Here a e^   and u^ are the viscoelastlc stress, strain and 

displacement fields,  v  is Poisson's ratio (assumed to be constant), \i 

is the shear modulus,  <5^   is the Kronecker delta, and  U*de  denotes the 

Rieraann-Stieltzes convolution, 

p*de = j^^  y(t-t) dE(T). 

After adopting the Galilean variable  x  = x-vt  and the change of 

variables  y^ = y, a ^^   = o^^, ° j2 " '^x ' "l " " ' ^^^''   ^^   ^^  useful to 

record for future reference the following results derived in [1] : 

'^yyCp.O)  = -Cg[ipvg(-vp)] I 1-Y   -^ 
P|     ^   UyCp.O) 

^0 = 

y^r(Y+2)   cos(TTr/2) 

q(l-v)   I   sin(qTT/2)   y"* 

(2) 

q   =  L(1+T)(1-YV/(1-V)) 1/2 

I = 2^(T+2) B[l±a±3, lza±3j 

%^x)   = COS(YTT/2) 

1T  x^^-^)/2 
/^ °"   (s)   |s 

yy 
(l-T)/2  ds 

s-x ,   x>0. (3) 



From (3) it is easy to show that aear the crack tip, as  x"*"0 ,  the 

singular terra in the asymptotic expansion of the norraal stress is given by 

o  (x) - ,:   'i 
yy    ^(i-Y)/2 

where 

-COs(TTY/2)  r"  !zzi!i__Hc tLS 
K(y)      J_^ jJ(l+T)/2 ^^- <'^> 

In the above equations the Fourier transform  f  of a function  f  is 

defined by 

f(P) = Too f(^) e^''^ dx, 

with inverse 

f^(p) = IT /I f(x) e-^'^P dx . 

and  f (x)(f (x))  denote the restriction of  f(x)  to  x>0(x<0). 

In the next section of this paper a simple expression for the ERR will 

be derived for a general form of the time dependence in the shear modulus. 

The derivation of this formula will parallel, within a more general 

setting, the calculation of the ERR carried out in [3].  In the final 

section of the paper the ERR is calculated for some specific models and the 

qualitative features of the ERR are discussed.  The paper concludes by 

illustrating, by means of a perturbation argument, the effect upon the ERR 

of modifying the spatial inhomogeneity in (1). 



Section 2.  The Calculation of the Energy Release Rate. 

For fracture in linearly elastic material, the ERR, hereafter denoted 

by G, is usually defined as the difference between the total power input 

to the body by external forces,  P,  and the rate of change of total 

• • 
internal strain energy,  E,  and kinetic energy,  K.  G  can then be 

calculated from knowledge of the singular asymptotic stress field at the 

crack tip.  For a viscoelastic material the difference P-E-K now involves 

a term representing the energy dissipated through viscous effects and the 

quantity  G which depends upon the entire history of the singular 

asymptotic stress and strain fields at the crack tip.  Because it is 

difficult to calculate  G  from the singular fields, a Barenblatt type 

failure zone is introduced behind the crack tip in order to cancel the 

singular asymptotic fields in front of the crack.  More precisely, the 

boundary value problem presented above is modified by assuming that two 

loads are acting on the crack faces:  the applied external tractions 

°  (x,0) = f(x),  and now denoted  a (x),  and cohesive failure stresses 

a^(x)  acting in a failure zone of length  a  immediately behind the 

crack tip.  The only assumptions about  o (x)  are that  a   is small 

relative to some length scale  a   associated with a~(x)  and that if 
e e 

K^(Y)  and K^(T)  are the coefficients given by (4) corresponding to 

o       and o       respectively, then K (Y) + K (Y) = 0.  Hence the effect 

of the failure zone is to cancel the singular stresses ahead of the crack 



tip and thereby produce a cvisp shaped crack profile behind the crack tip. 

What results is that for the steady-state problem considered here  G  is 

given by   , 

G = -/°3 °f(x) u ^(x.O) dx       ,      (5) 
'f  '     ^'^ 

where now u (x,0)  is the crack face displacement corresponding to the 

combined loading o     + a^. 
e   f 

A significant simplification in the calculation of (5) occurs for 

special cases of a'     and o~       Specificially, the external load  a" 
e       r g 

and failure zone stress,  o^,  will be assumed to have the forms 

^e^''^ " V    ' "f^''^ = "^f^    , -" < X < 0.    (6) 

For  a^/a^ « 1,  the essential features of the Barenblatt model are 

satisfied by the assumptions (6), namely, a set of cohesive stresses and 

associated length scale a^  and a length scale  a  associated with the 

applied load o^ such that a^ cancels the singular stresses produced by 

0^.     When a^  and a  are given by (6), (5) is replaced by 

G = -/^„ a (x) u   (x,0) dx. 

A general method for calculating (7) begins with (2).  If 

A 111 —Y 
T(p) = -C [ipvg(-vp)] p   ,  then (2) may be written as 

(7) 

o'^(P,0) = T(p) Gy(p,0) - a (p,0). (8) 



With the introduction of the Barenblatt failure zone u  represents the 

displacements corresponding to the combined external and cohesive loads, 

a  =0  =0 +0   and o     = a is the resultant stress ahead of the 
yy   e   f    .       yy 

+ 
cracks.  The solution of (8) is given in [1].  Specifically, if  F (z), 

functions analytic in the upper and lower complex half-plane, are defined 

^y   ':■■•" 

F(z)    2.i J-»^.^^^ X-. m 

with 

x^(p) = T(p) x"(p),      :     (10) 

then 

a'^(p) =  lim   F^(z) 
lTn(z)+0 

■.and. .■'-■- 

u~ (p) =   lim _ F~(z), 
^      lra(z)>0 

+ , 
Furthermore,  X (z)  has a particularly simple analytic extension to the 

upper half-plane given by 

x^x) = c/^z^^"^^/^ (11) 

c a constant. 

Applying the Parseval formula for the Fourier transform, (7) may be 

written as 



G    =    -/_c=    °f(P)     "y,x^P^     ^P' 

From  (6)   it   follows   that 

°f"" ■ Ti^ ■ °f"" • 2,n-i'   ) <'^' 

with similar expressions for  a   and a   .     Since  u  has an analytic 
e       e y -^ 

extension to the lower half-plane, namely F~(z),  and -ipu = u 
y  y,x' 

it follows that  u    can also be extended analytically into the lower 
y >x 

half-plane and from (13) it is clear that  o   has a meromorphic extension 

to the lower half-plane with a simple pole at  -i/a,.  Hence the integral 

in (12) may be evaluated using residues from which it follows that 

h     - 
G = - — F (-i/a.). (14) 

..   . a^       t 

To evaluate  F (-i/a^),  begin by writing  F'*"(Z) = F"*'(Z) + Ft'(z) 

where from (9) 

The analogous formulas to (11) for a  and a  show that a  has a 
e       e e 

simple pole at  i/a  and since X (z)  is analytic in the upper half- 

plane (15) may be evaluated  using residues to give 



F^Cz) = -X^z) [^ 
a L 
e e 

^&-       X^(z)  X'^(i/a )' 
e 

and so 

F^(p) = -o-(p) U - _^ X (p) 

X (i/a ) 
e 

Similarly it follows that 

Now one may write 

and similarly 

Ft(p) = -OTCP) (i --JL(P)_J. 
X (i/a^) 

0 (p) = a^(p) + a-(p) 
c c 6 

= F^(p) + a^(p) 

X"(i/a ) 
e 

Of(p) = Of(p) ^ 
X"^(p) 

X (i/a^) 

It now follows that 

o(p) = «Jg(p) + o^(p) 

X'^(p) 
a L 
e e a^Lj 

X'^(i/ag)(l+ia^p)   X^(i/a^)(l+ia^p) 
(16) 



10 

From (4) and the requiremeat that  K (Y) + K (Y) = 0  there results 

(l-Y)/2   _  (l-Y)/2 ^ 
e   f      '"f 

or equivalently. 

^e        4 
X'^d/a^)  X^i/a^) (17) 

Thus (16) may be written as 

°(P) ^  ^—^ S 1  (18) 
(1+ia p)(l+ia.p) X (i/a ) 

Since F (p) = Uy(p) = a(p)/T(p),  combining (14), (17), and (18) it 

follows that 

e 

Using   (10)  and   (11)   there  finally  results 

C _ ^V^f^ "e       (1-Y) ^f 
(a +a^)   2C7% -: • (20) 

^     ^ Q vg(iv/ap 
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It should be noted that in general, beginning with a relationship as in 

(8),  G will be given by (19) where X (z)  are solutions to the equation 

(10).  As shown in [3], the above derivation can be modified to produce an 

analog of (20) for more general loads of the form 

tx/a 
ojx)  = L^ r e ^  dh„(t) 

tx/a. 

e      e Q 

aj(x) = -Lj /" e ■ ^ dh^(t) 

where  h^(t)  and  hj(t)  are arbitrary signed (not necessarily positive) 

measures restricted only to the extent that the required integrals 

converge.  In particular, the above derivation for  G  corresponds to 

dh^(t) = dhj(t) = iS(t-l), the Dirac measure concentrated at  t = l.  However, 

for the more general loads, the analog of (20) presents more numerical 

complications in the calculation of G. 

Section 3.  Examples and Results. 

Two special cases of  g(t)  corresponding to the standard linear solid, 

g(t) = 1 + n exp(t/T),  and a power-law material,  g(t) = 1 + (t/x)"", 

where T  is a characteristic relaxation time will now be considered.  If 

the Carson transform g(t)  of the function g(t)  is defined by 

g(s) = g(0) + /g e"^^ dg(t), 

and the following nondimensional parameters are introduced 

e = a^/a^, 6 = y^/a^, a = Xv/a^, 
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then after recalling the definition of  C„  and noting that 

g(ivp) = ivpg(-vp)  (20) becomes 

_   (1-e)  Ve   (26)^ 1 
(1+e)   iv       E(T)     -,    ,     , • ^^^^ c g(v/a^) 

with 

E(T)   =  [r(T+2)]^cos(YTT(2)  
q(l-v)   sin(qTr/2)   r[I±a±3j   r[lljtlj   * 

For   the   standard   linear   solid 

g(-/^f)   =       l!a (22) 

and for power-law material 

i(v/a^) = 1+a" r(l-n). (23) 

The numerical calculation of the ERR from (21) is a simple matter, and 

certain qualitative features of  G  are immediate.  The inhomogeneous 

elastic effects in (21) are contained in the term (26) /E(Y)  while 

l/g(v/a )  represents the viscous effects.  The purely elastic problem is 

recovered when the crack speed v=0  and the homogeneous problem 

corresponds to T=0.  Consequently, the qualitative and quantitative 

effects of adding material viscoelasticity and Inhomogeneity to the basic 

elastic model are easily identified and studied. 

From (21) it is easy to determine an "effective depth",  y,,  such 

that the ERR predicted by the inhomogeneous material model equals the ERR 
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predicted by a homogeneous model with shear modulus equal to the 

inhoraogeneous modulus evaluated at  y = yi«  For a homogeneous material 

with modulus given by the inhoraogeneous model evaluated at an effective 

depth  y.,  i.e., for which 

M(t) = ^^(y^/y^)'^ g(t) = Ug g(t), 

the ERR is given by (21) with T=0  and  M   substituted for p .  Hence 
e c 

G = [|^J  ^^  . (24) 
2y^(l-v) g(v/a^) 

Equating  G  in (21) and (24) there results 

y^  = *- 1-v ^ 

To illustrate the result,  (y,/a )   is graphed in Figure 1 when Poisson's 

ratio v=,3. 

It is apparent that  G  is a monotonically increasing funcion of  5. 

This behavior is explained by noting that as 6  increases, so does the 

distance from the plane of the crack at which the material is as rigid as 

the homogeneous material with modulus  u(t) = M  g(t).  Thus with 

increasing <5  there is a larger region of 'soft'  material about the plane 

of the crack.  In previous studies of crack problems in nonhomogeneous 

elastic materials (c.f. [4] and the accompanying references) it was 

observed that with a decrease in rigidity, there is an attendant increase 
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in crack instability.  Since  G  has the interpretation of power available 

to the crack tip for propagating the crack, a monotone increasing 

dependence on  0  is in qualitative agreement with these previous studies. 

It follows iraraediately from (22) and (23) that the ERR is a monotone 

decreasing function of ct  and hence of crack speed.  Regardless of which 

model is used, the qualitative differences in G due to viscous effects are 

similar.  For this reason the normalized ERR,  g,  defined by 

G = 
1+e ^ 2M  ^ 

is displayed in Figure 2 only for the standard linear solid.  Note that  g 

is singular at T=l  just as the derivation of (2) is valid only for 

0 <^Y < 1.  A final remark along these lines is that if a simple power-law 

behavior in time, i.e.,  g(t) = (t/t)  ,  is assumed, then 

g(v/a^) = ot r(l-n).  Thus the simpler power-law model provides good 

agreement with the more realistic power-law model in predicting the ERR, 

yet has the desirable feature of providing a model which leads to a 

boundary value problem in which field quantities are more easily calculated 

[I]. 

This paper concludes by addressing the effect of a small perturbation 

in the spatial inhomogeneity upon the ERR.  This analysis is most easily 

carried out in terms of displacements.  If  <u,v>  denotes the displacement 

field corresponding to the original boundary value problem discussed above, 

then by applying a Fourier transform in the variable  x  to the 

stress-strain laws, the equations of equilibrium and the boundary 
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conditions, the boundary value problem corresponding to the modulus 

lJ(t,y) = M (y/y ) g(t)  may be written as 

where 

L[u,v](p,y) + i-B[u,v](p,y) = 0 y>0, -» < p < 

lim(y/y )^ B [G,G](p,y) = 0 
y^O 

< P < (24) 

lira(y/yj"^ B [u,v](p,y) = f(p) 
y-*-o        . 

p<0 

v(p,0) = 0 p>0 

Uu,v] = 

3 u ip  3v _ 2(l-v)p  u 
1-2V 17    1-2V 

8 2; ip 3G  (l-2v)p^ V 
2  2(l-v) T^      2(l-v) 

asd 

^1^"'^^ " 37 ^P'^^ ~ ^P v(p,y) 

B.lu.O] = ^ (p,y) - J£L. u(p,y) 
y        (I-v) 

f(p) = 
(1-2V) a^(p) 

(1-v) 2u^ g(ivp) 

:[u,v] = 

B^(u,v) 

B2(u,v) 
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Y If the spatial inhoraogeneity is modified as  e + (y/y ) ,  the above 

boundary value problem becomes 

(y/y^)^ [Uu,C] + (Y/y) 8[u,C]] + £ L[u,C] = 0 

lim(.e + (y/yJ'^j B [u,v] =0     -" < p < <»    (25) 

lira (E + (y/y )YJ B [G,0] = f(p)   p<0 
y^O c    z 

u(p,0) = 0        p>0. 

If the solution of (25) is expanded in the asymptotic series 

<u,v> = I     e\u^,  v^>, 
n=0 . 

then it is a straightforward matter to verify that substitution of this 

series into (25) shows that  <UQ, VQ>  solves the unperturbed problem (24) 

and hence corresponds to the solution obtained in [1].  Having found 

<UQ, VQ>,  one solves for  <u^, v^> recursively.  For example,  <u,, v,> 

satisfies 

(y/y^]^ [L[n^,   Cj + y/y B[U^, V^]]   +   L[u^,   v^] = 0 

li4B^(uQ, VQ) + (y/y^)^ ^i f"l» ''i ^ ^ = ° -°° < p < ^ 

lim[B2[uQ, VQ] + (y/y^)"^ ^2^''r ''l^^ " °   P<° 

u^Cp.O) = 0 p>0. 

The ERR corresponding to the perturbed problem (25) can now be 

expressed by the formal series 
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G = Too °f^V,^ dp 

= ^-" 'f^^O.y ^P ^ ' r» °f^v^,y dp + ^2 f^ a^^^^.y dp ^ ... 

= GQ + OCc)  as  £-»-0 

where  GQ  corresponds to the ERR when the spatial inhomogeneity is given 

by  (y/y^,) •  Thus when the spatial inhomogeneity is characterized by a 

modulus of the form e + (y/y^)^  and e « 1,  corresponding to a 

material that offers little resistance to shear near the crack plane, then 

the corresponding ERR agrees with the ERR predicted by the modulus {y/y^ ) 
c 

to an order of e. 
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Legends for Figures 

Fig. 1.  The normalized effective depth, (y,/a )^. 
1  e 

Fig. 2.  Normalized ERR for the standard linear solid with 

a = .l, n=10, 6=.01 (-), .1( ), !(--). 
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Figure 1 
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